MS-NeRF: Multi-Space Neural Radiance Fields
Supplementary materials

1 DETAILED NETWORKS AND EXPERIMENT
SETTINGS

1.1 MLP-based Network architecture

As illustrated in Fig. 1, we show the difference be-
tween our networks and the NeRF backbone network.
NeRF [1], Mip-NeRF [2], and the ‘NeRF MLP’ of Mip-
NeRF 360 [3] all share the same architecture except the
width of fully-connected layers as shown in Fig. la.
For NeRF and Mip-NeRF, the hyperparameters for layer
width are {w; = 256, ws = 256, w3 = 128}, and for Mip-
NeRF 360 they are {w; = 1024, we = 256, ws = 128}. We
use 7y(+) to uniformly represent the positional encoding
function, as we only modify the output part of the net-
works and the positional encoding follows the original
methods. Please refer to the original papers for more
details about the positional encoding function.

As in Fig. 1b, we only change the output part of
NeRF backbones. For the density branch that outputs a
single density o, we replace it with one that outputs K
densities {o*}. And for the color branch that outputs a
single color vector ¢, we replace it with one that outputs
K feature vectors {f*} of dimension d. K and d are
hyperparameters for the number of sub-spaces and the
dimension of the feature fields, respectively. Besides, we
change the activation function of the color branch from
Sigmoid to ReLU.

Most NeRF-based methods use volumetric rendering
to accumulate the color ¢ and the density o along
the ray to get the estimated color C for each pixel.
Instead, we perform volumetric rendering for each pair
of densities {o*} and features {f*} along the ray and
get K accumulated features {F*}. Then we use two
additional simple MLPs to decode and compose the final
RGB information. As in Fig. 1c, the MLPs consist of
two fully-connected layers with widths d and h. The
Gate MLP uses the Softmax activation function to get
the composition weights {w*}, while the Decoder MLP
uses the Sigmoid activation function to get the colors
{C*} of each sub-space.

As illustrated above, our multi-space module consists
of two simple MLPs and the output part of NeRF
backbones. Thus we can scale our module with hyperpa-
rameters {K, d, h}. For NeRF and Mip-NeRF related ex-
periments, we construct MS-NeRFg and MS-Mip-NeRF g
with {K = 6,d = 24,h = 24}; similarly, MS-NeRF,,
and MS-Mip-NeRF,, with {K = 6,d = 48,h = 48},
and MS-NeRFp and MS-Mip-NeRF, with {K = 8,d =

_>‘a

I

(C) Concat

(a) NeRF backbone architecture.

T,

v(d)
(C) Concat

)

(b) Multi-Space NeRF architecture.

B 1 ¥{wk} B 1 fwk}

Gate MLP Decoder MLP

(c) The architectures of Decoder MLP and Gate MLP.

Fig. 1: NeRF backbone architecture and our model
architectures. We denote fully-connected layers as the
blue layers in the figure. We use different colors to
represent different activation functions, i.e., yellow for
ReLU, green for Sigmoid, and black for Softmax.

64,h = 64}. Besides, we construct MS-Mip-NeRF 360
with {K = 8,d = 32,h = 64}. To fairly compare
with NeRFReN [4], we also construct MS-NeRFr with
{K =2,d =128, h = 128} based on NeRE.

1.2 Grid-based Network architecture

TensoRF [5] proposes the novel VM decomposition to
extract features and densities from grids and uses very
small MLPs with three layers mapping the features to
color vectors as in Fig. 2, where Q(V,p) are feature
vectors extracted from grid parameters, and for more
details, please refer to [5]. iINGP [6] also features small
MLP and grid-based trainable parameters, and details
are in [6]. For the main branch of our TensoRF-based
iNGP-based model, we only modify the output channel;
specifically, our model outputs K densities {c"} and
colors {c*} instead of one pair. The branch controlling
gate information follows the same architecture as the
color MLP in the main branch, except that it takes v(p)
and 7(d) as input and outputs K features {f*}. We then
perform volumetric rendering for each pair of densities
{o*} and colors {c*} to get K colors {C*} of each
sub-space. Also, we perform volumetric rendering for
densities {c*} and features {f*} to get K features { F*},
and we decode them using the gate MLP in Fig. 1c to get
the composition weights {w"}. Finally, we can render
novel views by weighted sum.

We use the reimplementation of NeuS [7] from [8],
which combines NeuS with hash encoding. For NeuS-
based experiments, we simply modify the output lay-
ers following the design from Sec. 1.1, except that we
change the density branch to a two-layered MLP.

1.3 Details about the importance sampling.

To aggregate colors {c;} along the rays using densities
{o:}, NeRF-based methods calculate the contribution of
each point to the estimated pixel color as follows:

I; = T;(1 — exp(—046;)) 1

where E = exp(— Z;;ll O'j(sj), 51 = t; —ti—1, and t;
represents the distance between the camera and the i-th
sample point. Most NeRF-based methods require impor-
tance sampling along the rays where there are higher
color contributions I; accumulated. However, in our
implementation, there are K parallel color contributions
{IF} at each sample point. To perform the importance
sampling, we use the weights {w"} of each sub-space to
aggregate color contributions at each point as the one for

the importance sampling, which is:

K
Li=> wlr @
j=1

1.4 Training details

NeRF-based experiments. We follow the original set-
tings from [1] with a few changes. We re-implement
NeRF using PyTorch [9] and PyTorch Lightning [10]

Hr-

Fig. 2: TensoRF backbone architecture.

and borrow some code from [11]. We use the Adam
optimizer [12] and exponentially decay the learning
rate from 5e-4 to 7e-5 with 8; = 0.9,8; = 0.999, and
e = le — 8. For all scenes and all experiments, we
use 1024 rays per batch, and train 2e5 iterations with
N. = 64 sampled points for the coarse network and
Ny = 128 sampled points for the fine network.

Mip-NeRF-based and Mip-NeRF 360-based experi-
ments. We implement our Mip-NeRF [2] based methods
on top of the official implementation! and implement
our Mip-NeRF 360 [3] based method on top of [13]. We
follow most training settings, except that we train 2e5
iterations with a batch of 1024 rays.

TensoRF-based and iNGP-based experiments. For
TensoRF [5] based experiments, we build the models
based on the official code? and follow all the default
settings. And for iNGP-based experiments, we construct
the model based on the code® with proposal network
estimator and follow all the default settings.

NeuS-based experiments. For NeuS [7] based exper-
iments, we build the models based on the code [8], and
follow all the default settings except that we train 200k
iterations as we train on scenes instead of objects.

Ref-NeRF. We also use the official code [13] to train
Ref-NeRF [14], and similarly, we follow most default
settings, except 2e5 iterations and a batch size of 1024
for training.

1. https://github.com/google/mipnerf
2. https:/ /github.com/apchenstu/TensoRF
3. https:/ /github.com/nerfstudio-project/nerfacc

NeRFReN. We compare our NeRF-based variant
MS-NeRF7 with NeRFReN [4] on the RFFR dataset,
and we re-train this method using the official code'.
Similarly, we follow most provided settings, except that
the number of used masks for reflective surfaces is zero
for fair comparisons, as our methods require no masks.

1.5 Evaluation Protocols

We use PSNR, SSIM [15], and LPIPS [16] with the
backbone of AlexNet [17] for quantitative comparisons.
For the synthetic dataset, we evaluate the methods on
the test set. For the real captured dataset, we sort all
images by the names according to alphabet order and
use every 1 of 8 images as the test images, as done in

[18].

2 ADDITIONAL DETAILS OF OUR PROPOSED
DATASET

2.1 Synthetic part

We use 3D models from BlenderKit?, a community
for sharing 3D models, textures, and others for 3D
artworks, to create scenes for the synthetic dataset.
As in Fig. 4, we visualize a few images for each
scene. We render circle paths for all scenes, and
we select 5 simple scenes and 5 challenging scenes,
i.e., ‘Scene01’, ‘Scene02’, ‘Scene03’, ‘Scene04’, ‘Scenel5’,
‘Sceneld’, ‘Scene27’, ‘Scene30’, ‘Scene32’, and ‘Scene33’,
to render the spiral paths and the mirror-passing-
through paths. In most scenes, there are more than one
mirrors that construct complex light paths, and we also
introduce refractive and transparent materials.

2.2 Real captured part

We capture the real dataset using a Sony Alpha 6400
APS-C camera with a fixed 30mm lens. We fix the ISO,
shutter speed, aperture size, and focus. We choose views
carefully to avoid the appearance of the camera and the
authors on the reflective surfaces. We use a few toys,
books, two mirrors, a glass ball with a smooth surface,
a glass ball with a diamond-like surface, and common
furniture to construct our scenes, as shown in Fig. 5. Our
scenes consist of 62 to 118 images, all at the resolution
of 6000x4000, and the viewpoints are randomly split
around the central objects. We use COLMAP [19] to
estimate the camera poses and use every 1 of 8 images
as the test set, and we downsample all images by a
factor of 8 for training and evaluation. To demonstrate
the different distribution of camera poses from our real
captured dataset and the RFFR dataset, we visualize the
poses of the scene ‘Scan05” in our dataset and the scene
‘mirror” in RFFR dataset in Fig. 3.

1. https://github.com/bennyguo/nerfren
2. https:/ /www.blenderkit.com/

N ®a -
‘2@ >
‘% @ @@@@ Q§ % =
- RR e e
<37 Vo9 S
pa » 9 «
a5 \
< LB
A
A
A A o

B A
&& =4 28 2,
5 B 6 oA \ﬁﬂ[
By aps” BB
57 my By Sn

(b) Camera poses of the scene ‘mirror” in the RFFR dataset.

Fig. 3: Visualization of the camera poses in our real
captured dataset and in the RFFR dataset. We draw
training views in black and test views in blue.

3 SuUB-SPACE DECOMPOSITION RESULTS

We provide the composed RGB maps and depth maps,
along with detailed sub-space weight maps, sub-space
RGB maps, and sub-space depth maps in Fig. 6 to offer
more transparency into the behavior of our multi-space
scheme. The decomposition results indicate that our
multi-scheme automatically handles virtual images in
reflective surfaces by decomposing them into different
sub-spaces.

Some depth visualizations exhibit that the shadow
areas in the rendered images are in different values from
the adjacent areas, which is not caused by our scheme
but is the common issue of the NeRF-based models
trained with RGB images only as shown in Fig. 7.

4 MULTI-SPACE SCHEME WITH VARYING NUM-
BERS OF INPUT IMAGES

To better observe the performance of the multi-space
module, we demonstrate a few rendered views with dif-
ferent numbers of training images in Fig. 8. As indicated,
our scheme robustly handles the virtual images caused
by reflective surfaces, except that in the most challeng-
ing mirror-passing-through paths with 30 input images,
some failure cases are observed. These results further
confirm the robustness of the multi-space scheme.

SS90
SNt

Test views

st

96
999640,

xJrs
P90,

Wi
1

€1oU0g [ACLEN'

&%

B Lo
i F
2

109uddg 209u30g €09ua0g $QUDG GORUDG 90ou0g £09ug gouDg 609U0g 019U0g , 119Uddg Z19U0g

Fig. 4: We randomly visualize three training views and two test views for each scene in our synthetic dataset. In

researchers can conduct preliminary experiments on them.

therefore,

7

Scene01~Scene05, we only change the layout and the number of the mirror(s), which can be treated as the basic

part of our synthetic dataset;

Scene29 Scene28

Scene30

Fig. 4: We randomly visualize three training views and two test views for each scene in our synthetic dataset. In
Scene01~Scene05, we only change the layout and the number of the mirror(s), which can be treated as the basic
part of our synthetic dataset; therefore, researchers can conduct preliminary experiments on them.

Test views

Training views

1ouedg zoueds QouUeds poueds goueds 90uedg £0Ueds

Fig. 5: We randomly visualize three training views and two test views for each scene in our real captured dataset.

Fig. 6: Visualizations of sub-space decomposition from MS-NeRFg. (a) composed RGB and depth map. (b) from
top to bottom are sub-space weight maps, sub-space RGB maps, and sub-space depth maps.

(©)

Fig. 6: Visualizations of sub-space decomposition from MS-NeRFg. (c) composed RGB and depth map. (d) from
top to bottom are sub-space weight maps, sub-space RGB maps, and sub-space depth maps.

(a) Ground-Truth view. (b) Depth map from MS-NeRFp. (c) Depth map from NeRF.

Fig. 7: Comparisons between the depth maps on shadow areas.

10

(e) MS-360 with sprlal paths

(g) GT (h) MS-360 with mirror-passing-through paths (i) Mip-360 with mirror-passing-through paths

Fig. 8: Visual comparisons between our model and Mip-NeRF 360 model with varying numbers of input images.
MS-360 stands for MS-Mip-NeRF 360 and Mip-360 represents Mip-NeRF 360. We mark the number of training
images in the lower right corner of each rendered image.

REFERENCES

(1]

(2]

(3]

(4]

(5]

6]

(71

(8]
(%]

[10]
(11]
(12]

(13]

[14]

[15]

[16]

[17]

(18]

(19]

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ra-
mamoorthi, and R. Ng, “Nerf: Representing scenes as neural
radiance fields for view synthesis,” Communications of the ACM,
vol. 65, no. 1, pp. 99-106, 2021. 1, 2

J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-
Brualla, and P. P. Srinivasan, “Mip-nerf: A multiscale representa-
tion for anti-aliasing neural radiance fields,” in Int. Conf. Comput.
Vis., 2021, pp. 5855-5864. 1, 2

J. T. Barron, B. Mildenhall, D. Verbin, P. P. Srinivasan, and P. Hed-
man, “Mip-nerf 360: Unbounded anti-aliased neural radiance
fiecvprlds,” in IEEE Conf. Comput. Vis. Pattern Recog., 2022, pp.
5470-5479. 1, 2

Y.-C. Guo, D. Kang, L. Bao, Y. He, and S.-H. Zhang, “Nerfren:
Neural radiance fields with reflections,” in IEEE Conf. Comput.
Vis. Pattern Recog., 2022, pp. 18409-18418. 2, 3

A. Chen, Z. Xu, A. Geiger,]. Yu, and H. Su, “Tensorf: Tensorial ra-
diance fields,” in European Conference on Computer Vision (ECCV),
2022. 2

T. Miiller, A. Evans, C. Schied, and A. Keller, “Instant neural
graphics primitives with a multiresolution hash encoding,” ACM
Trans. Graph., vol. 41, no. 4, jul 2022. 2

P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang,
“Neus: Learning neural implicit surfaces by volume rendering
for multi-view reconstruction,” Advances in Neural Information
Processing Systems, vol. 34, pp. 27171-27 183, 2021. 2

Y.-C. Guo, “Instant neural surface reconstruction,” 2022,
https:/ /github.com/bennyguo/instant-nsr-pl. 2

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch:
An imperative style, high-performance deep learning library,”
Advances in neural information processing systems, vol. 32, 2019. 2
W. Falcon and T. P. L. team, “Pytorch lightning,” 3 2019.
[Online]. Available: https://www.pytorchlightning.ai 2

L. Yen-Chen, “Nerf-pytorch,” https://github.com/yenchenlin/
nerf-pytorch/, 2020. 2

D. P. Kingma and]. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014. 2

B. Mildenhall, D. Verbin, P. P. Srinivasan, P. Hedman, R. Martin-
Brualla, and J. T. Barron, “MultiNeRF: A Code Release for
Mip-NeRF 360, Ref-NeRF, and RawNeRF,” 2022. [Online].
Available: https://github.com/google-research/multinerf 2

D. Verbin, P. Hedman, B. Mildenhall, T. Zickler, J. T. Barron, and
P. P. Srinivasan, “Ref-NeRF: Structured view-dependent appear-
ance for neural radiance fields,” CVPR, 2022. 2

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE transactions on image processing, vol. 13, no. 4, pp. 600-612,
2004. 3

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang,
“The unreasonable effectiveness of deep features as a perceptual
metric,” in IEEE Conf. Comput. Vis. Pattern Recog., 2018, pp. 586—
595. 3

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classi-
fication with deep convolutional neural networks,” Communica-
tions of the ACM, vol. 60, no. 6, pp. 84-90, 2017. 3

B. Mildenhall, P. P. Srinivasan, R. Ortiz-Cayon, N. K. Kalantari,
R. Ramamoorthi, R. Ng, and A. Kar, “Local light field fusion:
Practical view synthesis with prescriptive sampling guidelines,”
ACM Trans. Graph., vol. 38, no. 4, pp. 1-14, 2019. 3

J. L. Schonberger and J.-M. Frahm, “Structure-from-motion revis-
ited,” in IEEE Conf. Comput. Vis. Pattern Recog., 2016, pp. 4104—
4113. 3

https://www.pytorchlightning.ai
https://github.com/yenchenlin/nerf-pytorch/
https://github.com/yenchenlin/nerf-pytorch/
https://github.com/google-research/multinerf

	Detailed networks and experiment settings
	MLP-based Network architecture
	Grid-based Network architecture
	Details about the importance sampling.
	Training details
	Evaluation Protocols

	Additional details of our proposed dataset
	Synthetic part
	Real captured part

	Sub-space decomposition results
	Multi-space scheme with varying numbers of input images
	References

